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2 Frequency-Domain Analysis

Electrical engineers live in the two worlds, so to speak, of time and frequency.
Frequency-domain analysis is an extremely valuable tool to the communi-
cations engineer, more so perhaps than to other systems analysts. Since the
communications engineer is concerned primarily with signal bandwidths and
signal locations in the frequency domain, rather than with transient analysis,
the essentially steady-state approach of the (complex exponential) Fourier
series and transforms is used rather than the Laplace transform.

2.1 Mathematical Background
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2.2. We can use cosx = % (ejz + e‘j‘”) and sinx = % (ejm — e‘jm) to derive
many trigonometric identities. See Example [2.4]

Example 2.3. Use the Euler’s formula to show that —sSinx = cos .
it g (41540) 400
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Example 2.4. Use the Euler’s formula to show that COSQ(SE) = 3 (cos(2z) + 1).
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2.5. Similar technique gives

5.
(a) cos(—z) = cos(a),
(b) cos < — &) = sin(x),
)
)
)

C

sin (1 — cos (2x))

( =3
(d) sin(z) cos(z) = 1 sin(2z), and
Ih l“Nl ),ou — |,|

(e) the product-to-sum formula
i / Ae.r ve i, 'I:rem..,
cos(z) cos(y) = 5 (cos(x +y) +cos(z —y)). = (4)
Eders formda.

2.2 Continuous-Time Fourier Transform

Definition 2.6. The (direct) Fourier transform of a signal g(t) is defined

by ,,/‘r°°I;;"" ot 9®) |6(h)) : amplitude srectvom
S{gt}- @Ehl= /\q(t)e—ﬂﬁftdt <“3 att) (5
- Z @& L;[) : rl\asc rrc.c+f°"'1

This provides the frequency-domain descriptien of g(t). Conversion back to
the time domain is achieved via the inverse (Fourier) transform:

g (t) = / Gty Fourier  (6)
—00
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e We may combine (5) and (6) inte-one compact forpiula: 5, .4 Porget tu:
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G(f) = / g(t) eI (7)
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comples  ExfO0 o may simply write G = F {g} and g = F 1 {G}.

Fuﬂc
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e Note that the area under the curve of a function in one domain is the
same as its value at 0 in another domain:

£ G(0) = /_Zgu)dt and g(0)= [ ZG(f)df- ®)



2.7. In some referenced’, the (direct) Fourier transform of a signal g(t) is
defined by

Glw) = /_ N g(t)e 7@tdt (9)

(0. ¢]

In which case, we have

1 N . F o .
Jwt _ RN _ —jwt
Dy / Gw)edw=g() =— G(w) = / g (t)e7™dt (10)

e In MATLAB, these calculations are carried out via the commands fourier
and ifourier.
A Oo OO A
e Note that G(0) = [ g(t)dt and g(0) = 5= [ G(w)dw.
—00

™
—00

e The relationship between G(f) in (§) and G(w) in (9) is given by

G(f) = Gw)

w=27 f

G(w) = G(f)l-s (12)

27

Before we introduce our first but crucial transform pair in Example [2.13
which will involve rectangular function, we want to introduce the indicator
function which gives compact representation of the rectangular function.
We will see later that the transform of the rectangular function gives a sinc
function. Therefore, we will also introduce the sinc function as well.

Definition 2.8. An indicator function gives only two values: 0 or 1. It
is usually written in the form

1[some condition(s) involving ¢].

Its value at a particular ¢ is one if and only if the condition(s) inside is
satisfied for that ¢. For example,

1, —a <t <a,
0, otherwise.

1 <) - §

SMATLAB uses this definition.



Alternatively, we can use a set to specify the values of ¢ at which the indi-
cator function gives the value 1:

1, teA,
1Mﬂ:{0t¢A

In particular, the set A can be some intervals:

1, —a<t<a,
laalt) = { 0, otherwise,

and
1, —a<t<b,

l-a(t) = { 0, otherwise.

1 18145
Example 2.9. Carefully sketch the function g(t) = 1[|t| < 5] = E ’ 7
o, oterma,e )
-— —e
-5 S

Definition 2.10. Rectangular pulse [3, Ex 2.21 p 45]:
e —e

L H (t) =1 Ht‘ S 05] — 1[_0.5,0.5} (t) . ) St
o This is a pulse of unit height and unit Wia%hi centered at the origin.

Hence, it is also known as the unit gate function rect (¢) [3, p 78].

o In [3], the values of the pulse [ ] (¢) at —0.5 and 0.5 are not specified.
However, in [5], these values are defined to be 0.5.

o In MATLAB, the function rectangularPulse(t) can be used to pro-
duceﬁ the unit gate function above. More generally, we can produce
a rectangular pulse whose rising edge is at a and falling edge is at
b via rectangularPulse(a,b,t).

o T1(%) =11 < %] =1 nm @)

o Observe that Tj is the width of the pulse.

6Note that rectangularPulse(-0.5) and rectangularPulse(0.5) give 0.5 in MATLAB.
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Definition 2.11. The sinc function
sinc(z) = (sinz)/x (13)

is plotted in Figure [2|

»
»

Figure 2: Sinc function

e This function plays an important role in signal processing. It is also
known as the filtering or interpolating function.

o The full name of the function is “sine cardinal”ll

e Using L’Hopital’s rule, we find lirr(l) sinc(x) = 1.
T—

e sinc(z) is the product of an oscillating signal sin(x) (of period 27) and
a monotonically decreasing function 1/x . Therefore, sinc(z) exhibits
sinusoidal oscillations of period 27, with amplitude decreasing contin-
uously as 1/x.

e Its zero crossings are at all non-zero integer multiples of 7.

"which corresponds to the Latin name sinus cardinalis. It was introduced by Woodward in his 1952
paper “Information theory and inverse probability in telecommunication” [12], in which he noted that it
“occurs so often in Fourier analysis and its applications that it does seem to merit some notation of its

own”

10



Definition 2.12. Normalized sinc function:
In MATLAB and in many standard textbooks such as [3, p 37|, [14, eq.
2.64], and [12], the function sinc(z) is defined as

sin(mz) |

(14)

™

e Its zero crossings are at non-zero integer values of its argument as shown
in Figure 3

sin(mx)

sinc(nx) =
X

A~ N N o~
~ N4 —2\/1 1\}/ A4 N~
Figure 3: Normalized sinc function

e The “normalized” part of the name is added to distinguish it from
which is unnormalized .

2.13. Rectangular function and sinc function as a Fourier transform pair:

F sin(2
Lt < o] = Sm(ﬂ;ﬂf Y _ ousine(2r fa) (15)
The right half of Figure 4| illustrates . By setting a = Ty/2, we have

f
1]t < L] ? Tosine(mTyf). In particular, when Ty = 1, we have

F
rect (t) f sinc(m f).

The Fourier transform of the unit gate function is the normalized sinc func-
tion.

11
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Figure 4: Fourier transform of sinc and rectangular functions

Observe that

(a) The height of the sinc function’s peak is the same as the area under
the rectangular function.

e This follows from (8g]).

(b) The first zero crossing of the sinc function occurs at 1/(width of the
rectangular function).

Example 2.14.
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Definition 2.15. The (Dirac) delta function or (unit) impulse func-
tion is denoted by 6(¢). It is usually depicted as a vertical arrow at the
origin. Note that §(t) is notﬂ a true function; it is undefined at t = 0. We
define §(t) as a generalized function which satisfies the sampling property
(or sifting property) 9> 8 Lt) = gle) 5 (k)

v 0
/’gwawﬁ:gm> - ~) (16)

j gLk sl dt = Jﬁto) ster dt
for any function ¢(¢) which is continuous at t = 0.~ e

e In this way, the delta “function” has no mathematical or physical mean-
ing unless it appears under the operation of integration.

e Intuitively we may visualize 6(¢) as an infinitely tall, infinitely narrow
rectangular pulse of unit area: lim 1 [|¢| < 5.

e—0 N §
2.16. Properties of §(t): 2% (t-1)
S(:t)“., 2 -2 >
o §(t) =0 for t #0. 11?
S D) S T T RN
ten e — or . 2
ol DEA, !

+=T o fAcS(t);lt:lA(O)- = :’ ofA 1Tsu1
(a) f_oo5(t)dt:1.

l > bt
(b) fiy d(t)dt = 1. ‘ ! .
(c) §(t)dt = 19 »0)(x). Hence, wemay think of §(¢) as the “deriva-
(-, ] tive” of the unit step function U(t) = 1}y «)(z) [13, Defn 3.13 p
126].

Yeifbia pro ety v2©

o [= g(t)d(t — e)dt = g(c)for g continuous at c. In fact, for any £ > 0,
cl‘i.‘ =-cJ’t" g

o f%mww—@ﬁzwd

t-c=T
t=Trc

4= 9ree)] = [amersimds e
T=0 ~re :
e Convolution] property:
6+9)t) = (gx)) = [ oot —mydr=g() (1)
Mn““-ﬁmﬂv‘!':cq"y -v\:%‘lt-C-J:-J 0
bot pepoles  where we assume that g is continuous at ¢.

notet.on 8The §-function is a distribution, not a function. In spite of that, it’s always called §-function.

9 o, .
S(t) ¥ ﬁu_:)See Deﬁmtlon
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Time Manipulation

* Consider a function of time x(t).

* Time shifting:
When T > 0, x(t — T) is x(t) right-shifted (delayed) by T.
When T' < 0, x(t — T) is x(t) left-shifted (advanced) by |T|.
Summary: gt —T)isg(t) right-shifted by T

* Time scaling:

When 0 < a < 1, x(at) is x(t) expanded in time by a factor ofi.

When a > 1, x(at) is x(t) compressed in time by a factor of a.
Surlnmary: When a > 0, x(at) is x(t) scaled horizontally by a factor
of o
Note that the signal remains anchors at ¢ = 0. In other words, the signal
at t = 0 remains unchanged.

* Time inversion (or folding):

x(—t) is the mirror image of X (t) about the vertical axis.

©

[Lathi & Ding, 2009, Section 2.3, p. 28-32] |:>/

N
Time Manipulation

e For x(mt + ¢), may consider it as

x|{m (t — (— i)) : First scale x(t) horizontally by a factor of i Then,
m m
right-shift by — % .

X ((mt) — (—C)): First right-shift x (t) by — é Then scale horizontally by
1

a factor of e x(t+o) x(mtec)
time shift time scaling x(mt+c)
Thi, Po: at m
hﬂtf’thi when /\ a-c b-c /
D{' L 4 L : ) a b x(t) a-c c b—c
. m —
e time scaling x(mt) m m
Qo ia b ¢ lo} ot [x %j /\ time shift
- c
:LL"'\"-""C-)/ o'}' (_H)
e wil eccur (B 2
k 'L' suoln ‘h\ﬂ.t m

- C

—

\g
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4 ™
Example: Plot and find the area under

the curve of x(2t)

A
2
X (ly\ Al‘g;l under the graph is
1
> Jx(t)dt=§x8xz=8
-3 5 s
a=2
la] > 1

The graph is compressed horizontally.

A
2 Area under the graph is
x(Zt/\ 0 -
2t)dt ==X =X2=4
> jx( Jdt =53
5 —00
2 E>/

Note: still the same height

MC

Example: Plot and find the area under
the curve of x(2t)

This point corresponds This point corresponds This point corresponds
to the argument of x () to the argument of x() to the argument of x(-)
being —3.The same being 0. The same point being 5.The same point
point will happen in will happen in x(2t) will happen in x(2t)
x(2t) when 2t = =3, when 2t = 0. when 2t = 5.




Plot and area under the curve of x(—t)

A
2
.X'(t) Area under the graph is
o0
1
> ¢ Jx(t)dt=§><8x2=8
-3 5 .
Flipped horizontally
A
2 Area under the graph is
x(—t) o
j x(—t)dt =8
Pt
-5 3 —®©
5(1) “ 11 i,
1 e
Area = 1 —_| € Area =1 —_| Area = 1 — |
smaller &€ e—>0
R e— = ——— : - t
2 2 2
O(at) L1 {1
€ a
. lal
s = L] e Areq = L NS
rea lal I~ H rea — |a|\\ .Oua lal \
smaller € &
2 s —) S —) >t
" 2al 2lal 2[al  2lal
@ Here, [use a = l




e Factoring a constant a out of the d-function means scaling it by |}7|:

1
d(at) = —4i(t). (18)
|al
In particular,
1
—5(279)= 5-0(f) (19)
and |
d(w —wy) =02 f —2nfy) = %5(]” — fo), (20)
where w = 27 f and wy = 27 f. Observation :
2 2 when we taclude t=0
Example 2.17. [ ¢ (¢t)dt =1 and [6 ()t =0 . .. e :wbegpat v
I 1 k - ! 1 we 3L+ 1. -
——t—)—b t
Example 2 18. f5 t)dt = amb: ‘queus 1 * Oferwice, re oet O.
Better notetion j § (k) Jt =1 J’BL{')JT; =0
* ) . l'_o,z'_'l (-OJ"]
Example 2.19. §(t) f 1.=fo)h siftiag prorerty
- yurAt - tt - 27 A4
X(:F)=J=LU:)€.J dt =Je_ SU:Jclt?-j(P)- : ) s 1
— x=0
. )
FT J
'FO!’MUIO‘,
Example 2.20. e-727rf°t N S(f— fo) sithiay propecty, w2
f—l \
IET acLi:) X(#) \l
-l:azmulo- oo /
Jar At JrrrE .)W'{i‘
e () = jx(:f)e Jf' Is(ﬁf)e, clf Cj( =
Example 2.21. e/« % 270 (w — wp).
Example 2.22. ¢/4m % §(F-2) ]\
_1 1
T

£ =2 14



A )% R

c_c:{s (a0) = 2 e + -%- e
w74t
J:)T/ t | —:)Z-r/al'
cos (277, %) =5 ¢ Y7 ¢ r 172 /2
ample 2.23. cos(2007t) = T ) s,
F ~100 too
z_p,l;t:-_ 2007 t
A =100 F£-(-4)
2.24. cos(2m fot) 57 !@(f By +5(f+f0)).
. . 3 t
-1 ;¢
z ULT 1/2.
Example 2.25. cos(200t) ==
27, t = 200t _1}53 | w;o
= 1©° ~ 31. 9 Ha
J[‘; 7
Example 2.26. cos (2007t) + cos (4007rt) ey
o H 200 Hb
100 H?2 '“T Tz 11\/1_ Tu;
-&oo -1q00 | o Leo >7[

Example 2.27. cos (t) — 3 cos (3t) + 1 cos (5t) = ey

W
T |

1
F > 104 =3/277

g(t) = cos(t) — —cos(3t) + —cos(St) >
5 - Voo ¢
Shr i e ar i T
wrdt =t
Example 2.28. cos? (2007t) — 12
P _
) —ja \ 2% 1)
(cos ‘t)zz (i C.’M-rc" )) 1/&1\ ‘[ T ‘1\;
-200 200
=2 (A Y2AL +0 )
—Jut
- '%1(6 r Zc re 15

J z!r{z.oo)t :J‘UT LOJ'IT :)"-”'(_‘2”"){' )
(C 2€ + é

|~



F
Example 2.29. cos (2007t) x cos (4007t) f

= 27(100) t - ot
” Y100 Tu,_‘ Tvq T1;.1 TV._[
X -y« ) -
sty cos ) = (€ re) LT re?) ] s £

-400 -q00 | qo0 oo

n

IRTY) (k) ety L -k-y)
-:-1 (t— r re re )
1 e.J t#(‘W)t*cjlr[-mﬁ* g:l}ﬂl1on)1'+ e;,-.w [‘!m)t)
I1
2.30. Conjugate symmetry} If g(¢) isjiealsalied] then G(—f) =
(G(f) - L&)
=yt
C(F) = jjma Jt

e f

One

G(-£)+ ]3&) e’ )7L :[JJCGH

- do

- - -3)2mf
¢'Lh) = | e L

IWTAL:

Jgt_’c) e dt
(a) Even amplitudé symmetry: |G (—f)| = |G ( f)T

(b) Odd phase symmetry: /G (—f) = —ZG (f)

Observe that if we know G(f) for all f positive, we also know G(f) for
all f negative. Interpretation: Only half of the spectrum contains all
of the information. Positive-frequency part of the spectrum contains all
the necessary information. The negative-frequency half of the spectrum can

be determined by simply complex conjugating the positive-frequency half of
the spectrum.

Furthermore,
(a) If g(t) is real and even, then so is G(f).

(b) If g(t) is real and odd, then G(f) is pure imaginary and odd.

19Hermitian symmetry in [3, p 48] and [9, p 17 ].
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yer £t
Consider %U:) = A. e.om-
:)7-”7{': Lt _‘kl)

- (&
2.31. Shifting properties 3({_{:‘1) = Au:
. oy —sz-?)co-t‘] :]17)/;'!:
o Time-shift: = & A, C

Yty =g(t=t) % e PG (f) = Y (£)

o Note that [e /2™/t1| = 1. So, the spectrum of g (t — t1) looks exactly
the same as the spectrum of g (unless you also look at their

phases). g ) leh]
rd

N (A) = | c.-",zzr i 3 ’E}l A

u‘jf'new - e ts) ’{_9% -

o Frequency-shzft (or modulation): mas~tude
JL/?.?[ L F rlbi"
f]U:):Aoe @(t);_—\g(f_fl)
Ft N
err/t Gy~ A, CJ"-”QM‘/,){T ) T SGE) mified
e (j J) cm-.r)cx exyo . Yo the r‘:jk-]- )o// /
fo. £ !
& T 7

2.32. Let g(t), g1(t), and go(t) denote signals with G(f), G1(f), and Go(f)
denoting their respective Fourier transforms.

(a) Superposition theorem (linearity):
f
a191(t) + azg2(t) == a1G1(f) + axGa(f)-

(b) Scale-change theorem (scaling property [5l, p 88]; reciprocal spreading
[3, p 46]): ;
F
t G 21
ofat) = 6 (1)), 21

e The function g(at) represents the function g(t) compressed in time
by a factor a (when |a| > 1).

e The function G(f/a) represents the function G(f) expanded in
frequency by the same factor a.

17
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e The scaling property says that

o if we “squeeze” a function in ¢, its Fourier transform “stretches
out” in f,

o it is not possible to arbitrarily concentrate a function and its
Fourier transform simultaneously,

o generally speaking, the more concentrated ¢(t) is, the more
spread out its Fourier transform G(f) must be.

This trade-off can be formalized in the form of an uncertainty prin-
ciple. See also [2.45| and [2.46]

e Intuitively, we understand that compression in time by a factor
a means that the signal is varying more rapidly by the same fac-
tor. To synthesize such a signal, the frequencies of its sinusoidal
components must be increased by the factor a, implying that its
frequency spectrum is expanded by the factor a.

Similarly, a signal expanded in time varies more slowly; hence, the
frequencies of its components are lowered, implying that its fre-
quency spectrum is compressed.

(¢) Duality theorem (Symmetry Property [3, p 86]):

f
qte> 3 6GF) G(t) = g(-1)
e In words, for any result or relationship between ¢(t) and G(f),
there exists a dual result or relationship, obtained by interchanging
the roles of g(t) and G(f) in the original result (along with some

minor modifications arising because of a sign change).

In particular, if the Fourier transform of g(t) is G(f), then the
Fourier transform of G(f) with f replaced by ¢ is the original time-
domain signal with ¢ replaced by —f.

e If we use the w-definition ([9), we get a similar relationship with an
extra factor of 27:

A

a(t) fé 2 g(—w).
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Example 2.33. Let’s try to use the scale-change theorem to double-check
the Fourier transform of a simple function. Consider the function z(t) =

g(at) where
g(t) = &>,

Note that g(t) is simply a complex exponential function at frequency fj.
From Example [2.20 its Fourier transform G(f) is simply 6(f — fo).

a) From z(t) = g(at) = e/>(e) by grouping the factor a with f;, we get
g
x(t) = el2m(afo)t,

Therefore, x(t) is a complex exponential function at frequency afy. As
in Example [2.20], its Fourier transform is

X(f)=4(f —afo).

(b) Alternatively, we can also apply the scale-change theorem. From z(t) =
g(at), we know that X(f) = ﬁG (5) Plugging in G(f) = d(f — fo),

we get
X(f) =2 (f fo>——5< (f—afo))-

[a] lal
Now, recall, from [2.16|that, factoring a constant o out of the §-function
means scaling it by |71| Here, the constant is a = é Therefore,

X(f) = ﬁﬁa (f —afa) =6 (f —afo).

Exercise 2.34. Similar to Example [2.33] one can also try to apply the
scale-change theorem to show that

x(t) = cos(2mwafot) % ! (O0(f —afo) +(f +afy)) -

2
Example 2.35. From Example 2.13] we know that
1{|¢] < ] % 2 sinc (2raf) (22)
By the duality theorem, we have
2a sinc(2mat) % | = f| <4,

19



which is the same as

F_ 1
sinc(27 fot) == —1{|f| < fol- 23
@nit) 2= 51071 < (23)
Both transform pairs are illustrated in Figure [5
Tisinc(7T, f)
A
Al
N
>
T T
- = PaEVAN
2 2 ~\J
T
e By Theorem
1
| pL
. = 2/o
\//\ : : /N LN >/ + ;f
e o
L Jo
o

Figure 5: Duality theorem: rectangular and sinc functions

Example 2.36. Let’s try to derive the time-shift property from the frequency-
shift property. We start with an arbitrary function ¢g(¢). Next we will define
another function z(t) by setting X (f) to be g(f). Note that f here is just
a dummy variable; we can also write X (t) = ¢(¢). Applying the duality

f
theorem to the transform pair z(t) ?‘ X(f), we get another transform

pair X () % x(—f). The LHS is g(t); therefore, the RHS must be G(f).
This implies G(f) = z(—f). Next, recall the frequency-shift property:

: F
eIy (1) ?T X(f—o.
The duality theorem then gives
F o g
X (t—rc) ﬁ el g (—f) .

20



Replacing X (t) by ¢g(t) and xz(—f) by G(f), we finally get the time-shift
property.

Definition 2.37. The convolution of two signals, g;(¢) and g»(), is a new
function of time, g(t). We write

g = g1 *ga.

It is defined as the integral of the product of the two functions after one is
reversed and shifted:

9(t) = (g1 * g2)(1) (24)
— /_ g1 () ga(t — p)dp = /_ g1(t — p)ga(p)dp. (25)

e Note that ¢ is a parameter as far as the integration is concerned.

e The integrand is formed from ¢g; and go by three operations:

“$i,”  (a) time reversal to obtain go(—p),

* (. 64 (b) time shifting to obtain go(—(p —t)) = ga(t — 1), and

* ot f]/"(c) multiplication of g;(u) and go(t — p) to form the integrand.

e In some references, is expressed as g(t) = g1(t) * ga(t).

Example 2.38. We can get a triangle from convolution of two rectangular
waves. In particular,

1[Jt] < a] * 1[Jt] < a] = (2 — |¢]) x 1[}t] < 2a].

1 200

P T

i
= [~ -2 20

2.39. Convolution properties involving the d-function:
glt) % Slk) = oLt )
cj# ? = fj 5{_1) k5(t-a) =<3U:—a.)

gits — [ s fogqur guo— ] sce-af— 4(t-o)
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2.40. Convolution theorems:

(a) Convolution-in-time rule:
= G xG 2
g% g2 = G1 X Ga. (26)
(b) Convolution-in-frequency rule:
RN
g1 X g9 ? Gl * Gg. (27)

Example 2.41. We can use the convolution theorem to “prove” the frequency-

shift property in 2.3 | £y
27t
e 3, §(AA)

jz}?‘f;t

& xques T, (A K ethr= 6(FL)
2.42. From the convolution theorem, we have
f
2
e g ey Gx*G

e if g is band-limited to B, then ¢? is band-limited to 2B

2.43. Parseval’s theorem (Rayleigh’s energy theorem, Plancherel for-
mula) for Fourier transform:

[ st [ :Of- (28)

The LHS of is called the (total) energy of g(t). On the RHS, |G(f)|?
is called the energy spectral density of ¢(¢). By integrating the energy
spectral density over all frequency, we obtain the signal ’s total energy. The
energy contained in the frequency band B can be found from the integral
INEGIRE

More generally, Fourier transform preserves the/inner product [2, Theo-
rem 2.12]:

oo0) = | g0 = [ GG = (G1.Go).

0 —0Q
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Example 2.44. Perform the following integration graphically with the help
of Fourier transform properties:

o0
o0

(a) [ sinc(t)dt. = J sin (¥) 4

—OO\'_V-—-’ t

-
9t
9L¥) Asiac(ar (_—z‘—”) t)
4
the '[’"lf' of +he sine func,
i 1/ 1 = ovees = 'nx—t.
¥ 27, o
= rLf:oJ @ h-= Ir
at-l:)
) / b aLF)
7\/7%_": -, Zz = g
\,IM \\/, e.__——’
\ width =4
. E— m
T width of e vect.
Re call : }3&) dt = G(o) -7
-0 Pesseval’s
o oo
0 . 2
(b) [ sinc(t)dt. = chjzu)cl‘c = Slgmfét = glctf)) Jf
2
= hx % = 77'x-/-}- =7
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2.45. (Heisenberg) Uncertainty Principle [2, 11]: Suppose g is a func-
tion which satisfies the normalizing condition ||g||3 = [ |g(¢)|*dt = 1 which
automatically implies that ||G|3 = [ |G(f)*df = 1. Then

lgwfat) ([ Plemika) > —;, (29)
(/ > (/ ) 167

and equality holds if and only if ¢(t) = Ae B where B > 0 and |A]? =
V2B)/7.

e In fact, we have

([ Plate—twrar) ([ P60 - wbar) = i

for every tg, fo.

e The proof relies on Cauchy-Schwarz inequality:.

2 2
e For any function h, define its dispersion A, as [tih@)Pdt ft | %;)2' dit.

apply to the function g(t) = h(t)/||h||2 and get
1
1672

2.46. A signal cannot be simultaneously time-limited and band-limited.

Then, we can

AhXAHZ

Proof. Suppose ¢(t) is simultaneously (1) time-limited to Tj and (2) band-
limited to B. Pick any positive number 7 and positive integer K such that
fs =2 >2B and K > 2. The sampled signal gr,(t) is given by

K
gr.(t) =) glklo(t = kTy) = Y g[k]6 (t — KT))
k k=—K

where g[k] = g (kTs). Now, because we sample the signal faster than the
Nyquist rate, we can reconstruct the signal g by producing gr, * h, where
the LPF h, is given by

Hr(w) - Tsl[w < 27ch]

with the restriction that B < f. < TL — B. In frequency domain, we have

K
Gw) = Z glkle * T [ (w).
h=—K
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Consider w inside the interval [ = (27 B, 27 f.). Then,

K K
0 w>2rB G(w) w<2r fe T, Z g (kT)) oIk 2= T T Z g (KT Lk
k=—K k=—K
(30)
Because z # 0, we can divide by 2~ and then the last term becomes

a polynomial of the form
CLQKZQK + CLQK_122K_1 + -4+ a2+ ag.

By fundamental theorem of algebra, this polynomial has only finitely many
roots— that is there are only finitely many values of z = e/’ which satisfies
([30). Because there are uncountably many values of w in the interval I and
hence uncountably many values of z = /7 which satisfy ([30), we have a
contradiction. H

2.47. The observation in raises concerns about the signal and filter
models used in the study of communication systems. Since a signal cannot
be both bandlimited and timelimited, we should either abandon bandlimited
signals (and ideal filters) or else accept signal models that exist for all time.
On the one hand, we recognize that any real signal is timelimited, having
starting and ending times. On the other hand, the concepts of bandlimited
spectra and ideal filters are too useful and appealing to be dismissed entirely.

The resolution of our dilemma is really not so difficult, requiring but a
small compromise. Although a strictly timelimited signal is not strictly ban-
dlimited, its spectrum may be negligibly small above some upper frequency
limit B. Likewise, a strictly bandlimited signal may be negligibly small out-
side a certain time interval t; <t < t9. Therefore, we will often assume that
signals are essentially both bandlimited and timelimited for most practical
purposes.
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